Dr Vp¶
Drone racing with continuous viewpoint constraints.
This example combines drone racing through gates with camera viewpoint constraints to maintain visual contact with reference targets. The problem includes:
- 6-DOF rigid body dynamics (position, velocity, attitude quaternion, angular velocity)
- Sequential gate passage constraints
- Attitude planning for simultaneous gate navigation and visual tracking
- Continuous sensor visibility constraints to keep targets in FOV
- Minimal time objective
File: examples/drone/dr_vp.py
import os
import sys
import jax.numpy as jnp
import numpy as np
import numpy.linalg as la
# Add grandparent directory to path to import examples.plotting
current_dir = os.path.dirname(os.path.abspath(__file__))
grandparent_dir = os.path.dirname(os.path.dirname(current_dir))
sys.path.append(grandparent_dir)
import openscvx as ox
from examples.plotting_viser import (
create_animated_plotting_server,
create_scp_animated_plotting_server,
)
from openscvx import Problem
from openscvx.utils import gen_vertices, rot
n = 33 # Number of Nodes
total_time = 40.0 # Total time for the simulation
# Define state components
position = ox.State("position", shape=(3,)) # 3D position [x, y, z]
position.max = np.array([200.0, 100, 50])
position.min = np.array([-200.0, -100, 15])
position.initial = np.array([10.0, 0, 20])
position.final = [10.0, 0, 20]
velocity = ox.State("velocity", shape=(3,)) # 3D velocity [vx, vy, vz]
velocity.max = np.array([100, 100, 100])
velocity.min = np.array([-100, -100, -100])
velocity.initial = np.array([0, 0, 0])
velocity.final = [("free", 0), ("free", 0), ("free", 0)]
attitude = ox.State("attitude", shape=(4,)) # Quaternion [qw, qx, qy, qz]
attitude.max = np.array([1, 1, 1, 1])
attitude.min = np.array([-1, -1, -1, -1])
attitude.initial = [("free", 1.0), ("free", 0), ("free", 0), ("free", 0)]
attitude.final = [("free", 1.0), ("free", 0), ("free", 0), ("free", 0)]
angular_velocity = ox.State("angular_velocity", shape=(3,)) # Angular velocity [wx, wy, wz]
angular_velocity.max = np.array([10, 10, 10])
angular_velocity.min = np.array([-10, -10, -10])
angular_velocity.initial = [("free", 0), ("free", 0), ("free", 0)]
angular_velocity.final = [("free", 0), ("free", 0), ("free", 0)]
# Define control components
thrust_force = ox.Control("thrust_force", shape=(3,)) # Thrust forces [fx, fy, fz]
thrust_force.max = np.array([0, 0, 4.179446268 * 9.81])
thrust_force.min = np.array([0, 0, 0])
thrust_force.guess = np.repeat(np.array([[0.0, 0, 10]]), n, axis=0)
torque = ox.Control("torque", shape=(3,)) # Control torques [tau_x, tau_y, tau_z]
torque.max = np.array([18.665, 18.665, 0.55562])
torque.min = np.array([-18.665, -18.665, -0.55562])
torque.guess = np.zeros((n, 3))
### Sensor Params ###
alpha_x = 6.0 # Angle for the x-axis of Sensor Cone
alpha_y = 6.0 # Angle for the y-axis of Sensor Cone
A_cone = np.diag(
[
1 / np.tan(np.pi / alpha_x),
1 / np.tan(np.pi / alpha_y),
0,
]
) # Conic Matrix in Sensor Frame
c = jnp.array([0, 0, 1]) # Boresight Vector in Sensor Frame
norm_type = 2 # Norm Type
R_sb = jnp.array([[0, 1, 0], [0, 0, 1], [1, 0, 0]])
### End Sensor Params ###
### Gate Parameters ###
n_gates = 10
gate_centers = [
np.array([59.436, 0.0000, 20.0000]),
np.array([92.964, -23.750, 25.5240]),
np.array([92.964, -29.274, 20.0000]),
np.array([92.964, -23.750, 20.0000]),
np.array([130.150, -23.750, 20.0000]),
np.array([152.400, -73.152, 20.0000]),
np.array([92.964, -75.080, 20.0000]),
np.array([92.964, -68.556, 20.0000]),
np.array([59.436, -81.358, 20.0000]),
np.array([22.250, -42.672, 20.0000]),
]
radii = np.array([2.5, 1e-4, 2.5])
A_gate = rot @ np.diag(1 / radii) @ rot.T
A_gate_cen = []
for center in gate_centers:
center[0] = center[0] + 2.5
center[2] = center[2] + 2.5
A_gate_cen.append(A_gate @ center)
nodes_per_gate = 3
gate_nodes = np.arange(nodes_per_gate, n, nodes_per_gate)
vertices = []
for center in gate_centers:
vertices.append(gen_vertices(center, radii))
### End Gate Parameters ###
n_subs = 10
np.random.seed(0)
init_poses = np.array(
[
[100.0 + np.random.random() * 20.0, -60.0 + np.random.random() * 20.0, 20.0]
for _ in range(n_subs)
]
) # Shape: (n_subs, 3)
# Define list of all states (needed for Problem and constraints)
states = [position, velocity, attitude, angular_velocity]
controls = [thrust_force, torque]
# Symbolic sensor visibility constraint function
def g_vp(p_s_I, x_pos, x_quat):
p_s_s = R_sb @ ox.spatial.QDCM(x_quat).T @ (p_s_I - x_pos)
return ox.linalg.Norm(A_cone @ p_s_s, ord=norm_type) - (c.T @ p_s_s)
# Generate box constraints for all states
constraints = []
for state in states:
constraints.extend([ox.ctcs(state <= state.max), ox.ctcs(state.min <= state)])
# Add visibility constraints using Vmap for parallel evaluation
# Single CTCS constraint with vectorized evaluation over all target poses
visibility_constraint = ox.ctcs(
ox.Vmap(
lambda pose: g_vp(pose, position, attitude),
batch=init_poses,
)
<= 0.0
)
constraints.append(visibility_constraint)
# Add gate constraints using symbolic expressions
for node, cen in zip(gate_nodes, A_gate_cen):
A_gate_const = A_gate
cen_const = cen
# Gate constraint: ||A @ pos - c||_inf <= 1
gate_constraint = (
(ox.linalg.Norm(A_gate_const @ position - cen_const, ord="inf") <= 1.0).convex().at([node])
)
constraints.append(gate_constraint)
# Create symbolic dynamics
m = 1.0 # Mass of the drone
g_const = -9.18
J_b = jnp.array([1.0, 1.0, 1.0]) # Moment of Inertia of the drone
# Normalize quaternion for dynamics
q_norm = ox.linalg.Norm(attitude)
attitude_normalized = attitude / q_norm
# Define dynamics as dictionary mapping state names to their derivatives
J_b_inv = 1.0 / J_b
J_b_diag = ox.linalg.Diag(J_b)
dynamics = {
"position": velocity,
"velocity": (1.0 / m) * ox.spatial.QDCM(attitude_normalized) @ thrust_force
+ np.array([0, 0, g_const], dtype=np.float64),
"attitude": 0.5 * ox.spatial.SSMP(angular_velocity) @ attitude_normalized,
"angular_velocity": ox.linalg.Diag(J_b_inv)
@ (torque - ox.spatial.SSM(angular_velocity) @ J_b_diag @ angular_velocity),
}
# Generate initial guess for position trajectory through gates
position_bar = ox.init.linspace(
keyframes=[position.initial] + gate_centers + [position.final],
nodes=[0] + list(gate_nodes) + [n - 1],
)
# Generate attitude guess to point sensor at mean target position
b = R_sb @ np.array([0, 1, 0])
mean_target = np.mean(init_poses, axis=0)
attitude_bar = np.zeros((n, 4))
for k in range(n):
a = mean_target - position_bar[k]
# Determine the direction cosine matrix that aligns the z-axis of the sensor frame with the
# relative position vector
q_xyz = np.cross(b, a)
q_w = np.sqrt(la.norm(a) ** 2 + la.norm(b) ** 2) + np.dot(a, b)
q_no_norm = np.hstack((q_w, q_xyz))
attitude_bar[k] = q_no_norm / la.norm(q_no_norm)
# Set guesses
position.guess = position_bar
attitude.guess = attitude_bar
time = ox.Time(
initial=0.0,
final=("minimize", total_time),
min=0.0,
max=total_time,
)
problem = Problem(
dynamics=dynamics,
states=states,
controls=controls,
time=time,
constraints=constraints,
N=n,
)
problem.settings.scp.ep_tr = 1e-3 # Trust Region Tolerance
plotting_dict = {
"vertices": vertices,
"n_subs": n_subs,
"alpha_x": alpha_x,
"alpha_y": alpha_y,
"R_sb": R_sb,
"init_poses": init_poses,
"norm_type": norm_type,
}
if __name__ == "__main__":
problem.initialize()
results = problem.solve()
results = problem.post_process()
results.update(plotting_dict)
# Create both visualization servers (viser auto-assigns ports)
traj_server = create_animated_plotting_server(
results,
thrust_key="thrust_force",
viewcone_scale=10.0,
show_control_plot="thrust_force",
show_control_norm_plot="thrust_force",
)
scp_server = create_scp_animated_plotting_server(
results,
attitude_stride=3,
frame_duration_ms=200,
)
# Keep both servers running
traj_server.sleep_forever()