autotuning
Autotuning functions for SCP (Successive Convex Programming) parameters.
AugmentedLagrangian
¶
Bases: AutotuningBase
Augmented Lagrangian method for autotuning SCP weights.
This method uses Lagrange multipliers and penalty parameters to handle constraints. The method: - Updates Lagrange multipliers based on constraint violations - Increases penalty parameters when constraints are violated - Decreases penalty parameters when constraints are satisfied
Source code in openscvx/algorithms/autotuning.py
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 | |
__init__(rho_init: float = 1.0, rho_max: float = 1000000.0, gamma_1: float = 2.0, gamma_2: float = 0.5, eta_0: float = 0.01, eta_1: float = 0.1, eta_2: float = 0.8, ep: float = 0.5, eta_lambda: float = 1.0, lam_vc_max: float = 100000.0, lam_prox_min: float = 0.001, lam_prox_max: float = 200000.0, lam_cost_drop: int = -1, lam_cost_relax: float = 1.0)
¶
Initialize Augmented Lagrangian autotuning parameters.
All parameters have defaults and can be modified after instantiation
via attribute access (e.g., autotuner.rho_max = 1e7).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
rho_init
|
float
|
Initial penalty parameter for constraints. Defaults to 1.0. |
1.0
|
rho_max
|
float
|
Maximum penalty parameter. Defaults to 1e6. |
1000000.0
|
gamma_1
|
float
|
Factor to increase trust region weight when ratio is low. Defaults to 2.0. |
2.0
|
gamma_2
|
float
|
Factor to decrease trust region weight when ratio is high. Defaults to 0.5. |
0.5
|
eta_0
|
float
|
Acceptance ratio threshold below which solution is rejected. Defaults to 1e-2. |
0.01
|
eta_1
|
float
|
Threshold above which solution is accepted with constant weight. Defaults to 1e-1. |
0.1
|
eta_2
|
float
|
Threshold above which solution is accepted with lower weight. Defaults to 0.8. |
0.8
|
ep
|
float
|
Threshold for virtual control weight update (nu > ep vs nu <= ep). Defaults to 0.5. |
0.5
|
eta_lambda
|
float
|
Step size for virtual control weight update. Defaults to 1e0. |
1.0
|
lam_vc_max
|
float
|
Maximum virtual control penalty weight. Defaults to 1e5. |
100000.0
|
lam_prox_min
|
float
|
Minimum trust region (proximal) weight. Defaults to 1e-3. |
0.001
|
lam_prox_max
|
float
|
Maximum trust region (proximal) weight. Defaults to 2e5. |
200000.0
|
lam_cost_drop
|
int
|
Iteration after which cost relaxation applies (-1 = never). Defaults to -1. |
-1
|
lam_cost_relax
|
float
|
Factor applied to lam_cost after lam_cost_drop. Defaults to 1.0. |
1.0
|
Source code in openscvx/algorithms/autotuning.py
update_weights(state: AlgorithmState, candidate: CandidateIterate, nodal_constraints: LoweredJaxConstraints, settings: Config, params: dict) -> str
¶
Update SCP weights and cost parameters based on iteration number.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
state
|
AlgorithmState
|
Solver state containing current weight values (mutated in place) |
required |
nodal_constraints
|
LoweredJaxConstraints
|
Lowered JAX constraints |
required |
settings
|
Config
|
Configuration object containing adaptation parameters |
required |
params
|
dict
|
Dictionary of problem parameters |
required |
Source code in openscvx/algorithms/autotuning.py
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 | |
AutotuningBase
¶
Bases: ABC
Base class for autotuning methods in SCP algorithms.
This class provides common functionality for calculating costs and penalties that are shared across different autotuning strategies (e.g., Penalized Trust Region, Augmented Lagrangian).
Subclasses should implement the update_weights method to define their specific
weight update strategy.
Class Attributes
COLUMNS: List of Column specs for autotuner-specific metrics to display. Subclasses override this to add their own columns.
Source code in openscvx/algorithms/autotuning.py
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 | |
calculate_cost_from_state(x: np.ndarray, settings: Config) -> float
staticmethod
¶
Calculate cost from state vector based on final_type and initial_type.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
x
|
ndarray
|
State trajectory array (n_nodes, n_states) |
required |
settings
|
Config
|
Configuration object containing state types |
required |
Returns:
| Name | Type | Description |
|---|---|---|
float |
float
|
Computed cost |
Source code in openscvx/algorithms/autotuning.py
calculate_nonlinear_penalty(x_prop: np.ndarray, x_bar: np.ndarray, u_bar: np.ndarray, lam_vc: np.ndarray, lam_vb: float, lam_cost: float, nodal_constraints: LoweredJaxConstraints, params: dict, settings: Config) -> Tuple[float, float, float]
staticmethod
¶
Calculate nonlinear penalty components.
This method computes three penalty components: 1. Cost penalty: weighted original cost 2. Virtual control penalty: penalty for dynamics violations 3. Nodal penalty: penalty for constraint violations
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
x_prop
|
ndarray
|
Propagated state (n_nodes-1, n_states) |
required |
x_bar
|
ndarray
|
Previous iteration state (n_nodes, n_states) |
required |
u_bar
|
ndarray
|
Solution control (n_nodes, n_controls) |
required |
lam_vc
|
ndarray
|
Virtual control weight (scalar or matrix) |
required |
lam_vb
|
float
|
Virtual buffer penalty weight (scalar) |
required |
lam_cost
|
float
|
Cost relaxation parameter (scalar) |
required |
nodal_constraints
|
LoweredJaxConstraints
|
Lowered JAX constraints |
required |
params
|
dict
|
Dictionary of problem parameters |
required |
settings
|
Config
|
Configuration object |
required |
Returns:
| Type | Description |
|---|---|
Tuple[float, float, float]
|
Tuple of (nonlinear_cost, nonlinear_penalty, nodal_penalty): - nonlinear_cost: Weighted cost component - nonlinear_penalty: Virtual control penalty - nodal_penalty: Constraint violation penalty |
Source code in openscvx/algorithms/autotuning.py
update_weights(state: AlgorithmState, candidate: CandidateIterate, nodal_constraints: LoweredJaxConstraints, settings: Config, params: dict) -> str
abstractmethod
¶
Update SCP weights and cost parameters based on iteration state.
This method is called each iteration to adapt weights based on the current solution quality and constraint satisfaction.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
state
|
AlgorithmState
|
Solver state containing current weight values (mutated in place) |
required |
nodal_constraints
|
LoweredJaxConstraints
|
Lowered JAX constraints |
required |
settings
|
Config
|
Configuration object containing adaptation parameters |
required |
params
|
dict
|
Dictionary of problem parameters |
required |
Returns:
| Name | Type | Description |
|---|---|---|
str |
str
|
Adaptive state string describing the update action (e.g., "Accept Lower") |
Source code in openscvx/algorithms/autotuning.py
ConstantProximalWeight
¶
Bases: AutotuningBase
Constant Proximal Weight method.
This method keeps the trust region weight constant throughout the optimization, while still updating virtual control weights and handling cost relaxation. Useful when you want a fixed trust region size without adaptation.
Source code in openscvx/algorithms/autotuning.py
update_weights(state: AlgorithmState, candidate: CandidateIterate, nodal_constraints: LoweredJaxConstraints, settings: Config, params: dict) -> str
¶
Update SCP weights keeping trust region constant.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
state
|
AlgorithmState
|
Solver state containing current weight values (mutated in place) |
required |
nodal_constraints
|
LoweredJaxConstraints
|
Lowered JAX constraints |
required |
settings
|
Config
|
Configuration object containing adaptation parameters |
required |
params
|
dict
|
Dictionary of problem parameters |
required |
Returns:
| Name | Type | Description |
|---|---|---|
str |
str
|
Adaptive state string (e.g., "Accept", "Reject") |
Source code in openscvx/algorithms/autotuning.py
RampProximalWeight
¶
Bases: AutotuningBase
Ramp Proximal Weight method.
This method ramps the proximal weight up linearly over the first few iterations, then keeps it constant.
Source code in openscvx/algorithms/autotuning.py
update_weights(state: AlgorithmState, candidate: CandidateIterate, nodal_constraints: LoweredJaxConstraints, settings: Config, params: dict) -> str
¶
Update SCP weights keeping trust region constant.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
state
|
AlgorithmState
|
Solver state containing current weight values (mutated in place) |
required |
nodal_constraints
|
LoweredJaxConstraints
|
Lowered JAX constraints |
required |
settings
|
Config
|
Configuration object containing adaptation parameters |
required |
params
|
dict
|
Dictionary of problem parameters |
required |
Returns:
| Name | Type | Description |
|---|---|---|
str |
str
|
Adaptive state string (e.g., "Accept", "Reject") |