base
Base class for successive convexification algorithms.
This module defines the abstract interface that all SCP algorithm implementations must follow, along with the AlgorithmState dataclass that holds mutable state during SCP iterations.
Algorithm
¶
Bases: ABC
Abstract base class for successive convexification algorithms.
This class defines the interface for SCP algorithms used in trajectory optimization. Implementations should remain minimal and functional, delegating state management to the AlgorithmState dataclass.
The two core methods mirror the SCP workflow:
- initialize: Store compiled infrastructure and warm-start solvers
- step: Execute one convex subproblem iteration
Immutable components (ocp, discretization_solver, jax_constraints, etc.) are stored during initialize(). Mutable configuration (params, settings) is passed per-step to support runtime parameter updates and tolerance tuning.
Statefullness
Avoid storing mutable iteration state (costs, weights, trajectories) on
self. All iteration state should live in :class:AlgorithmState or
a subclass thereof, passed explicitly to step(). This keeps algorithm
classes stateless w.r.t. iteration, making data flow explicit and staying
close to functional programming principles where possible.
Example
Implementing a custom algorithm::
class MyAlgorithm(Algorithm):
def initialize(self, solver, discretization_solver,
jax_constraints, emitter,
params, settings):
# Store compiled infrastructure
self._solver = solver
self._discretization_solver = discretization_solver
self._jax_constraints = jax_constraints
self._emitter = emitter
# Warm-start with initial params/settings...
def step(self, state, params, settings):
# Run one iteration using self._* and per-step params/settings
return converged
Source code in openscvx/algorithms/base.py
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 | |
citation() -> List[str]
abstractmethod
¶
Return BibTeX citations for this algorithm.
Implementations should return a list of BibTeX entry strings for the papers that should be cited when using this algorithm.
Returns:
| Type | Description |
|---|---|
List[str]
|
List of BibTeX citation strings. |
Example
Getting citations for an algorithm::
algorithm = PenalizedTrustRegion()
for bibtex in algorithm.citation():
print(bibtex)
Source code in openscvx/algorithms/base.py
initialize(solver: ConvexSolver, discretization_solver: callable, jax_constraints: LoweredJaxConstraints, emitter: callable, params: dict, settings: Config) -> None
abstractmethod
¶
Initialize the algorithm and store compiled infrastructure.
This method stores immutable components and performs any setup required before the SCP loop begins (e.g., warm-starting solvers). The params and settings are passed for warm-start but may change between steps.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
solver
|
ConvexSolver
|
Convex subproblem solver (e.g., CVXPySolver) |
required |
discretization_solver
|
callable
|
Compiled discretization solver function |
required |
jax_constraints
|
LoweredJaxConstraints
|
JIT-compiled JAX constraint functions |
required |
emitter
|
callable
|
Callback for emitting iteration progress data |
required |
params
|
dict
|
Problem parameters dictionary (for warm-start only) |
required |
settings
|
Config
|
Configuration object (for warm-start only) |
required |
Source code in openscvx/algorithms/base.py
step(state: AlgorithmState, params: dict, settings: Config) -> bool
abstractmethod
¶
Execute one iteration of the SCP algorithm.
This method solves a single convex subproblem, updates the algorithm state in place, and returns whether convergence criteria are met.
Uses stored infrastructure (ocp, discretization_solver, etc.) with per-step params and settings to support runtime modifications.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
state
|
AlgorithmState
|
Mutable algorithm state (modified in place) |
required |
params
|
dict
|
Problem parameters dictionary (may change between steps) |
required |
settings
|
Config
|
Configuration object (may change between steps) |
required |
Returns:
| Type | Description |
|---|---|
bool
|
True if convergence criteria are satisfied, False otherwise. |
Source code in openscvx/algorithms/base.py
AlgorithmState
dataclass
¶
Mutable state for SCP iterations.
This dataclass holds all state that changes during the solve process. It stores only the evolving trajectory arrays, not the full State/Control objects which contain immutable configuration metadata.
Trajectory arrays are stored in history lists, with the current guess accessed via properties that return the latest entry.
A fresh instance is created for each solve, enabling easy reset functionality.
Attributes:
| Name | Type | Description |
|---|---|---|
k |
int
|
Current iteration number (starts at 1) |
J_tr |
float
|
Current trust region cost |
J_vb |
float
|
Current virtual buffer cost |
J_vc |
float
|
Current virtual control cost |
lam_prox |
float
|
Current trust region weight (may adapt during solve) |
lam_cost |
float
|
Current cost weight (may relax during solve) |
lam_vc |
Union[float, ndarray]
|
Current virtual control penalty weight |
lam_vb |
float
|
Current virtual buffer penalty weight |
n_x |
int
|
Number of states (for unpacking V vectors) |
n_u |
int
|
Number of controls (for unpacking V vectors) |
N |
int
|
Number of trajectory nodes (for unpacking V vectors) |
X |
List[ndarray]
|
List of state trajectory iterates |
U |
List[ndarray]
|
List of control trajectory iterates |
discretizations |
List[DiscretizationResult]
|
List of unpacked discretization results |
VC_history |
List[ndarray]
|
List of virtual control history |
TR_history |
List[ndarray]
|
List of trust region history |
A_bar_history |
List[ndarray]
|
List of state transition matrices |
B_bar_history |
List[ndarray]
|
List of control influence matrices |
C_bar_history |
List[ndarray]
|
List of control influence matrices for next node |
x_prop_history |
List[ndarray]
|
List of propagated states |
Source code in openscvx/algorithms/base.py
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 | |
V_history: List[np.ndarray]
property
¶
Backward-compatible view of raw discretization matrices.
Note
This is a read-only view. Internal code should prefer
state.discretizations.
lam_cost: float
property
¶
Get current cost weight.
Returns:
| Type | Description |
|---|---|
float
|
Current cost weight (latest entry in lam_cost_history) |
lam_prox: float
property
¶
Get current trust region weight.
Returns:
| Type | Description |
|---|---|
float
|
Current trust region weight (latest entry in lam_prox_history) |
lam_vb: float
property
¶
Get current virtual buffer penalty weight.
Returns:
| Type | Description |
|---|---|
float
|
Current virtual buffer penalty weight (latest entry in lam_vb_history) |
lam_vc: Union[float, np.ndarray]
property
¶
Get current virtual control penalty weight.
Returns:
| Type | Description |
|---|---|
Union[float, ndarray]
|
Current virtual control penalty weight (latest entry in lam_vc_history) |
u: np.ndarray
property
¶
Get current control trajectory array.
Returns:
| Type | Description |
|---|---|
ndarray
|
Current control trajectory guess (latest entry in history), shape (N, n_controls) |
x: np.ndarray
property
¶
Get current state trajectory array.
Returns:
| Type | Description |
|---|---|
ndarray
|
Current state trajectory guess (latest entry in history), shape (N, n_states) |
A_d(index: int = -1) -> np.ndarray
¶
Extract discretized state transition matrix from discretizations.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
index
|
int
|
Index into V_history (default: -1 for latest entry) |
-1
|
Returns:
| Type | Description |
|---|---|
ndarray
|
Discretized state Jacobian A_d with shape (N-1, n_x, n_x), or None if no V_history |
Example
After running an iteration, access linearization matrices::
problem.step()
A_d = problem.state.A_d() # Shape (N-1, n_x, n_x), latest
A_d_prev = problem.state.A_d(-2) # Previous iteration
Source code in openscvx/algorithms/base.py
B_d(index: int = -1) -> np.ndarray
¶
Extract discretized control influence matrix (current node).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
index
|
int
|
Index into discretization history (default: -1 for latest entry) |
-1
|
Returns:
| Type | Description |
|---|---|
ndarray
|
Discretized control Jacobian B_d with shape (N-1, n_x, n_u), or None if empty. |
Example
After running an iteration, access linearization matrices::
problem.step()
B_d = problem.state.B_d() # Shape (N-1, n_x, n_u), latest
B_d_prev = problem.state.B_d(-2) # Previous iteration
Source code in openscvx/algorithms/base.py
C_d(index: int = -1) -> np.ndarray
¶
Extract discretized control influence matrix (next node).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
index
|
int
|
Index into discretization history (default: -1 for latest entry) |
-1
|
Returns:
| Type | Description |
|---|---|
ndarray
|
Discretized control Jacobian C_d with shape (N-1, n_x, n_u), or None if empty. |
Example
After running an iteration, access linearization matrices::
problem.step()
C_d = problem.state.C_d() # Shape (N-1, n_x, n_u), latest
C_d_prev = problem.state.C_d(-2) # Previous iteration
Source code in openscvx/algorithms/base.py
accept_solution(cand: CandidateIterate) -> None
¶
Accept the given candidate iterate by updating the state in place.
Source code in openscvx/algorithms/base.py
add_discretization(V: np.ndarray) -> None
¶
Append a raw discretization matrix as an unpacked result.
from_settings(settings: Config) -> AlgorithmState
classmethod
¶
Create initial algorithm state from configuration.
Copies only the trajectory arrays from settings, leaving all metadata (bounds, boundary conditions, etc.) in the original settings object.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
settings
|
Config
|
Configuration object containing initial guesses and SCP parameters |
required |
Returns:
| Type | Description |
|---|---|
AlgorithmState
|
Fresh AlgorithmState initialized from settings with copied arrays |
Source code in openscvx/algorithms/base.py
x_prop(index: int = -1) -> np.ndarray
¶
Extract propagated state trajectory from the discretization history.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
index
|
int
|
Index into V_history (default: -1 for latest entry) |
-1
|
Returns:
| Type | Description |
|---|---|
ndarray
|
Propagated state trajectory x_prop with shape (N-1, n_x), or None if no V_history |
Example
After running an iteration, access the propagated states::
problem.step()
x_prop = problem.state.x_prop() # Shape (N-1, n_x), latest
x_prop_prev = problem.state.x_prop(-2) # Previous iteration
Source code in openscvx/algorithms/base.py
DiscretizationResult
dataclass
¶
Unpacked discretization data from a multi-shot discretization matrix.
The discretization solver returns a matrix V that stores multiple blocks
(propagated state and linearization matrices) across nodes/time. Historically,
we stored the raw V matrices and re-unpacked them repeatedly via slicing.
This dataclass unpacks once and makes access trivial.
Source code in openscvx/algorithms/base.py
from_V(V: np.ndarray, n_x: int, n_u: int, N: int) -> DiscretizationResult
classmethod
¶
Unpack the final timestep of a raw discretization matrix V.