problem
Core optimization problem interface for trajectory optimization.
This module provides the Problem class, the main entry point for defining and solving trajectory optimization problems using Sequential Convex Programming (SCP).
Example
The prototypical flow is to define a problem, then initialize, solve, and post-process the results
problem = Problem(dynamics, constraints, states, controls, N, time)
problem.initialize()
result = problem.solve()
result = problem.post_process()
Problem
¶
Source code in openscvx/problem.py
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 | |
lowered: LoweredProblem
property
¶
Access the lowered problem containing JAX/CVXPy objects.
Returns:
| Type | Description |
|---|---|
LoweredProblem
|
LoweredProblem with dynamics, constraints, unified interfaces, and CVXPy vars |
parameters: ParameterDict
property
writable
¶
Get the parameters dictionary.
The returned dictionary automatically syncs to CVXPy when modified
problem.parameters["obs_radius"] = 2.0 # Auto-syncs to CVXPy problem.parameters.update({"gate_0_center": center}) # Also syncs
Returns:
| Name | Type | Description |
|---|---|---|
ParameterDict |
ParameterDict
|
Special dict that syncs to CVXPy on assignment. |
slices: dict[str, slice]
property
¶
Get mapping of state and control names to their slices in unified vectors.
This property returns a dictionary mapping each state and control variable name to its slice in the respective unified vector. This is particularly useful for expert users working with byof (bring-your-own functions) who need to manually index into the unified x and u vectors.
Returns:
| Type | Description |
|---|---|
dict[str, slice]
|
Dictionary mapping variable names to slice objects. State variables map to slices in the x vector. Control variables map to slices in the u vector. |
Example
Usage with byof::
problem = ox.Problem(dynamics, states, controls, ...)
print(problem.slices)
# {'position': slice(0, 3), 'velocity': slice(3, 6), 'theta': slice(0, 1)}
# Use in byof functions
byof = {
"nodal_constraints": [
lambda x, u, node, params: x[problem.slices["velocity"][0]] - 10.0,
lambda x, u, node, params: u[problem.slices["theta"][0]] - 1.57,
]
}
state: Optional[AlgorithmState]
property
¶
Access the current solver state.
The solver state contains all mutable state from the SCP iterations, including current guesses, costs, weights, and history.
Returns:
| Type | Description |
|---|---|
Optional[AlgorithmState]
|
AlgorithmState if initialized, None otherwise |
Example
When using Problem.step() can use the state to check convergence etc.
problem.initialize()
problem.step()
print(f"Iteration {problem.state.k}, J_tr={problem.state.J_tr}")
u_unified
property
¶
Unified control interface (delegates to lowered.u_unified).
x_unified
property
¶
Unified state interface (delegates to lowered.x_unified).
__init__(dynamics: dict, constraints: List[Union[Constraint, CTCS]], states: List[State], controls: List[Control], N: int, time: Time, *, dynamics_prop: Optional[dict] = None, states_prop: Optional[List[State]] = None, algebraic_prop: Optional[dict] = None, licq_min: float = 0.0, licq_max: float = 0.0001, time_dilation_factor_min: float = 0.3, time_dilation_factor_max: float = 3.0, autotuner: Optional[AutotuningBase] = AugmentedLagrangian(), byof: Optional[ByofSpec] = None)
¶
The primary class in charge of compiling and exporting the solvers.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
dynamics
|
dict
|
Dictionary mapping state names to their dynamics expressions. Each key should be a state name, and each value should be an Expr representing the derivative of that state. |
required |
constraints
|
List[Union[CTCSConstraint, NodalConstraint]]
|
List of constraints decorated with @ctcs or @nodal |
required |
states
|
List[State]
|
List of State objects representing the state variables. May optionally include a State named "time" (see time parameter below). |
required |
controls
|
List[Control]
|
List of Control objects representing the control variables |
required |
N
|
int
|
Number of segments in the trajectory |
required |
time
|
Time
|
Time configuration object with initial, final, min, max. Required. If including a "time" state in states, the Time object will be ignored and time properties should be set on the time State object instead. |
required |
dynamics_prop
|
dict
|
Dictionary mapping EXTRA state names to their dynamics expressions for propagation. Only specify additional states beyond optimization states (e.g., {"distance": speed}). Do NOT duplicate optimization state dynamics here. |
None
|
states_prop
|
List[State]
|
List of EXTRA State objects for propagation only. Only specify additional states beyond optimization states. Used with dynamics_prop. |
None
|
algebraic_prop
|
dict
|
Dictionary mapping names to symbolic expressions for outputs evaluated (not integrated) during propagation. |
None
|
licq_min
|
float
|
Minimum LICQ constraint value. Defaults to 0.0. |
0.0
|
licq_max
|
float
|
Maximum LICQ constraint value. Defaults to 1e-4. |
0.0001
|
time_dilation_factor_min
|
float
|
Minimum time dilation factor. Defaults to 0.3. |
0.3
|
time_dilation_factor_max
|
float
|
Maximum time dilation factor. Defaults to 3.0. |
3.0
|
byof
|
ByofSpec
|
Expert mode only. Raw JAX functions to
bypass symbolic layer. See :class: |
None
|
Note
There are two approaches for handling time: 1. Auto-create (simple): Don't include "time" in states, provide Time object 2. User-provided (for time-dependent constraints): Include "time" State in states and in dynamics dict, don't provide Time object
Source code in openscvx/problem.py
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 | |
citation() -> str
¶
Return BibTeX citations for all components used in this problem.
Aggregates citations from the algorithm and other components (discretization, convex solver, etc.) Each section is prefixed with a comment indicating which component the citation is for.
Returns:
| Type | Description |
|---|---|
str
|
Formatted string containing all BibTeX citations with comments. |
Example
Print all citations for a problem::
problem = Problem(dynamics, constraints, states, controls, N, time)
print(problem.citation())
Source code in openscvx/problem.py
initialize()
¶
Compile dynamics, constraints, and solvers; prepare for optimization.
This method vmaps dynamics, JIT-compiles constraints, builds the convex subproblem, and initializes the solver state. Must be called before solve().
Example
Prior to calling the .solve() method it is necessary to initialize the problem
problem = Problem(dynamics, constraints, states, controls, N, time)
problem.initialize() # Compile and prepare
problem.solve() # Run optimization
Source code in openscvx/problem.py
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 | |
post_process() -> OptimizationResults
¶
Propagate solution through full nonlinear dynamics for high-fidelity trajectory.
Integrates the converged SCP solution through the nonlinear dynamics to produce x_full, u_full, and t_full. Call after solve() for final results.
Returns:
| Type | Description |
|---|---|
OptimizationResults
|
OptimizationResults with propagated trajectory fields |
Raises:
| Type | Description |
|---|---|
ValueError
|
If solve() has not been called yet. |
Source code in openscvx/problem.py
reset()
¶
Reset solver state to re-run optimization from initial conditions.
Creates fresh AlgorithmState while preserving compiled dynamics and solvers. Use this to run multiple optimizations without re-initializing.
Raises:
| Type | Description |
|---|---|
ValueError
|
If initialize() has not been called yet. |
Example
After calling .step() it may be necessary to reset the problem back to the initial
conditions
problem.initialize()
result1 = problem.step()
problem.reset()
result2 = problem.solve() # Fresh run with same setup
Source code in openscvx/problem.py
solve(max_iters: Optional[int] = None, continuous: bool = False) -> OptimizationResults
¶
Run the SCP algorithm until convergence or iteration limit.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
max_iters
|
Optional[int]
|
Maximum iterations (default: settings.scp.k_max) |
None
|
continuous
|
bool
|
If True, run all iterations regardless of convergence |
False
|
Returns:
| Type | Description |
|---|---|
OptimizationResults
|
OptimizationResults with trajectory and convergence info (call post_process() for full propagation) |
Source code in openscvx/problem.py
step() -> dict
¶
Perform a single SCP iteration.
Designed for real-time plotting and interactive optimization. Performs one iteration including subproblem solve, state update, and progress emission.
Note
This method is NOT idempotent - it mutates internal state and advances the iteration counter. Use reset() to return to initial conditions.
Returns:
| Name | Type | Description |
|---|---|---|
dict |
dict
|
Contains "converged" (bool) and current iteration state |
Example
Call .step() manually in a loop to control the algorithm directly
problem.initialize()
while not problem.step()["converged"]:
plot_trajectory(problem.state.trajs[-1])