Skip to content

problem

Core optimization problem interface for trajectory optimization.

This module provides the Problem class, the main entry point for defining and solving trajectory optimization problems using Sequential Convex Programming (SCP).

Example

The prototypical flow is to define a problem, then initialize, solve, and post-process the results

problem = Problem(dynamics, constraints, states, controls, N, time)
problem.initialize()
result = problem.solve()
result = problem.post_process()

Problem

Source code in openscvx/problem.py
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
class Problem:
    def __init__(
        self,
        dynamics: dict,
        constraints: List[Union[Constraint, CTCS]],
        states: List[State],
        controls: List[Control],
        N: int,
        time: Time,
        *,
        dynamics_prop: Optional[dict] = None,
        states_prop: Optional[List[State]] = None,
        algebraic_prop: Optional[dict] = None,
        licq_min: float = 0.0,
        licq_max: float = 1e-4,
        time_dilation_factor_min: float = 0.3,
        time_dilation_factor_max: float = 3.0,
        autotuner: Optional[AutotuningBase] = AugmentedLagrangian(),
        byof: Optional[ByofSpec] = None,
    ):
        """The primary class in charge of compiling and exporting the solvers.

        Args:
            dynamics (dict): Dictionary mapping state names to their dynamics expressions.
                Each key should be a state name, and each value should be an Expr
                representing the derivative of that state.
            constraints (List[Union[CTCSConstraint, NodalConstraint]]):
                List of constraints decorated with @ctcs or @nodal
            states (List[State]): List of State objects representing the state variables.
                May optionally include a State named "time" (see time parameter below).
            controls (List[Control]): List of Control objects representing the control variables
            N (int): Number of segments in the trajectory
            time (Time): Time configuration object with initial, final, min, max.
                Required. If including a "time" state in states, the Time object will be ignored
                and time properties should be set on the time State object instead.
            dynamics_prop (dict, optional): Dictionary mapping EXTRA state names to their
                dynamics expressions for propagation. Only specify additional states beyond
                optimization states (e.g., {"distance": speed}). Do NOT duplicate optimization
                state dynamics here.
            states_prop (List[State], optional): List of EXTRA State objects for propagation only.
                Only specify additional states beyond optimization states. Used with dynamics_prop.
            algebraic_prop (dict, optional): Dictionary mapping names to symbolic expressions
                for outputs evaluated (not integrated) during propagation.
            licq_min (float): Minimum LICQ constraint value. Defaults to 0.0.
            licq_max (float): Maximum LICQ constraint value. Defaults to 1e-4.
            time_dilation_factor_min (float): Minimum time dilation factor.
                Defaults to 0.3.
            time_dilation_factor_max (float): Maximum time dilation factor.
                Defaults to 3.0.
            byof (ByofSpec, optional): Expert mode only. Raw JAX functions to
                bypass symbolic layer. See :class:`openscvx.expert.ByofSpec` for
                detailed documentation.

        Note:
            There are two approaches for handling time:
            1. Auto-create (simple): Don't include "time" in states, provide Time object
            2. User-provided (for time-dependent constraints): Include "time" State in states and
               in dynamics dict, don't provide Time object
        """

        # Symbolic Preprocessing & Augmentation
        self.symbolic: SymbolicProblem = preprocess_symbolic_problem(
            dynamics=dynamics,
            constraints=constraints,
            states=states,
            controls=controls,
            N=N,
            time=time,
            licq_min=licq_min,
            licq_max=licq_max,
            time_dilation_factor_min=time_dilation_factor_min,
            time_dilation_factor_max=time_dilation_factor_max,
            dynamics_prop_extra=dynamics_prop,
            states_prop_extra=states_prop,
            algebraic_prop=algebraic_prop,
            byof=byof,
        )

        # Validate byof early (after preprocessing, before lowering) to fail fast
        if byof is not None:
            from openscvx.expert.validation import validate_byof

            # Calculate unified state and control dimensions from preprocessed states/controls
            # These dimensions include symbolic augmentation (time, CTCS) but not byof CTCS
            # augmentation, which is exactly what user byof functions will see
            n_x = sum(
                state.shape[0] if len(state.shape) > 0 else 1 for state in self.symbolic.states
            )
            n_u = sum(
                control.shape[0] if len(control.shape) > 0 else 1
                for control in self.symbolic.controls
            )

            validate_byof(byof, self.symbolic.states, n_x, n_u, N)

        # Store byof for cache hashing
        self._byof = byof

        # Create solver before lowering (solver owns its variables)
        self._solver: PTRSolver = PTRSolver()

        # Lower to JAX and CVXPy (byof handling happens inside lower_symbolic_problem)
        self._lowered: LoweredProblem = lower_symbolic_problem(
            self.symbolic, self._solver, byof=byof
        )

        # Store parameters in two forms:
        self._parameters = self.symbolic.parameters  # Plain dict for JAX functions
        # Wrapper dict for user access that auto-syncs
        self._parameter_wrapper = ParameterDict(self, self._parameters, self.symbolic.parameters)

        # Setup SCP Configuration
        self.settings = Config(
            sim=SimConfig(
                x=self._lowered.x_unified,
                x_prop=self._lowered.x_prop_unified,
                u=self._lowered.u_unified,
                total_time=self._lowered.x_unified.initial[self._lowered.x_unified.time_slice][0],
                n_states=self._lowered.x_unified.initial.shape[0],
                n_states_prop=self._lowered.x_prop_unified.initial.shape[0],
                ctcs_node_intervals=self.symbolic.node_intervals,
            ),
            scp=ScpConfig(
                n=N,
                n_states=self._lowered.x_unified.shape[0],
                autotuner=autotuner,
            ),
            dis=DiscretizationConfig(),
            dev=DevConfig(),
            cvx=ConvexSolverConfig(),
            prp=PropagationConfig(),
        )

        # OCP construction happens in initialize() so users can modify
        # settings (like uniform_time_grid) between __init__ and initialize()
        self._discretization_solver: callable = None

        # Set up emitter & queue (thread started in initialize() after columns are known)
        if self.settings.dev.printing:
            self.print_queue = queue.Queue()
            self.emitter_function = lambda data: self.print_queue.put(data)
            self.print_thread = None  # Started in initialize()
        else:
            # no-op emitter; nothing ever gets queued or printed
            self.print_queue = None
            self.emitter_function = lambda data: None
            self.print_thread = None

        # Columns for printing (set in initialize() based on algorithm + autotuner)
        self._columns = None

        self.timing_init = None
        self.timing_solve = None
        self.timing_post = None

        # Compiled dynamics (vmapped versions, set in initialize())
        self._compiled_dynamics: Optional[Dynamics] = None
        self._compiled_dynamics_prop: Optional[Dynamics] = None

        # Compiled constraints (JIT-compiled versions, set in initialize())
        self._compiled_constraints: Optional[LoweredJaxConstraints] = None

        # Solver state (created fresh for each solve)
        self._state: Optional[AlgorithmState] = None

        # Final solution state (saved after successful solve)
        self._solution: Optional[AlgorithmState] = None

        # SCP algorithm (currently hardcoded to PTR)
        self._algorithm = PenalizedTrustRegion()

    @property
    def parameters(self) -> ParameterDict:
        """Get the parameters dictionary.

        The returned dictionary automatically syncs to CVXPy when modified:
            problem.parameters["obs_radius"] = 2.0  # Auto-syncs to CVXPy
            problem.parameters.update({"gate_0_center": center})  # Also syncs

        Returns:
            ParameterDict: Special dict that syncs to CVXPy on assignment.
        """
        return self._parameter_wrapper

    @parameters.setter
    def parameters(self, new_params: dict):
        """Replace the entire parameters dictionary and sync to CVXPy.

        Args:
            new_params: New parameters dictionary
        """
        self._parameters = dict(new_params)  # Create new plain dict
        self._parameter_wrapper = ParameterDict(self, self._parameters, new_params)
        self._sync_parameters()

    def _sync_parameters(self):
        """Sync all parameter values to CVXPy parameters."""
        if self._lowered.cvxpy_params is not None:
            for name, value in self._parameter_wrapper.items():
                if name in self._lowered.cvxpy_params:
                    self._lowered.cvxpy_params[name].value = value

    @property
    def state(self) -> Optional[AlgorithmState]:
        """Access the current solver state.

        The solver state contains all mutable state from the SCP iterations,
        including current guesses, costs, weights, and history.

        Returns:
            AlgorithmState if initialized, None otherwise

        Example:
            When using `Problem.step()` can use the state to check convergence _etc._

                problem.initialize()
                problem.step()
                print(f"Iteration {problem.state.k}, J_tr={problem.state.J_tr}")
        """
        return self._state

    @property
    def lowered(self) -> LoweredProblem:
        """Access the lowered problem containing JAX/CVXPy objects.

        Returns:
            LoweredProblem with dynamics, constraints, unified interfaces, and CVXPy vars
        """
        return self._lowered

    @property
    def x_unified(self):
        """Unified state interface (delegates to lowered.x_unified)."""
        return self._lowered.x_unified

    @property
    def u_unified(self):
        """Unified control interface (delegates to lowered.u_unified)."""
        return self._lowered.u_unified

    @property
    def slices(self) -> dict[str, slice]:
        """Get mapping of state and control names to their slices in unified vectors.

        This property returns a dictionary mapping each state and control variable name
        to its slice in the respective unified vector. This is particularly useful for
        expert users working with byof (bring-your-own functions) who need to manually
        index into the unified x and u vectors.

        Returns:
            Dictionary mapping variable names to slice objects.
                State variables map to slices in the x vector.
                Control variables map to slices in the u vector.

        Example:
            Usage with byof::

                problem = ox.Problem(dynamics, states, controls, ...)
                print(problem.slices)
                # {'position': slice(0, 3), 'velocity': slice(3, 6), 'theta': slice(0, 1)}

                # Use in byof functions
                byof = {
                    "nodal_constraints": [
                        lambda x, u, node, params: x[problem.slices["velocity"][0]] - 10.0,
                        lambda x, u, node, params: u[problem.slices["theta"][0]] - 1.57,
                    ]
                }
        """
        slices = {}
        slices.update({state.name: state.slice for state in self.symbolic.states})
        slices.update({control.name: control.slice for control in self.symbolic.controls})
        return slices

    def _format_result(self, state: AlgorithmState, converged: bool) -> OptimizationResults:
        """Format solver state as an OptimizationResults object.

        Converts the internal solver state into a user-facing results object,
        mapping state/control arrays to named fields based on symbolic metadata.

        Args:
            state: The AlgorithmState to extract results from.
            converged: Whether the optimization converged.

        Returns:
            OptimizationResults containing the solution data.
        """
        # Build nodes dictionary with all states and controls
        nodes_dict = {}

        # Add all states (user-defined and augmented)
        for sym_state in self.symbolic.states:
            nodes_dict[sym_state.name] = state.x[:, sym_state._slice]

        # Add all controls (user-defined and augmented)
        for control in self.symbolic.controls:
            nodes_dict[control.name] = state.u[:, control._slice]

        return OptimizationResults(
            converged=converged,
            t_final=state.x[:, self.settings.sim.time_slice][-1],
            nodes=nodes_dict,
            trajectory={},  # Populated by post_process
            _states=self.symbolic.states_prop,  # Use propagation states for trajectory dict
            _controls=self.symbolic.controls,
            X=state.X,  # Single source of truth - x and u are properties
            U=state.U,
            discretization_history=state.V_history,
            J_tr_history=state.J_tr,
            J_vb_history=state.J_vb,
            J_vc_history=state.J_vc,
            TR_history=state.TR_history,
            VC_history=state.VC_history,
            lam_prox_history=state.lam_prox_history.copy(),
            actual_reduction_history=state.actual_reduction_history.copy(),
            pred_reduction_history=state.pred_reduction_history.copy(),
            acceptance_ratio_history=state.acceptance_ratio_history.copy(),
        )

    def initialize(self):
        """Compile dynamics, constraints, and solvers; prepare for optimization.

        This method vmaps dynamics, JIT-compiles constraints, builds the convex
        subproblem, and initializes the solver state. Must be called before solve().

        Example:
            Prior to calling the `.solve()` method it is necessary to initialize the problem

                problem = Problem(dynamics, constraints, states, controls, N, time)
                problem.initialize()  # Compile and prepare
                problem.solve()       # Run optimization
        """
        printing.intro()

        # Enable the profiler
        pr = profiling.profiling_start(self.settings.dev.profiling)

        t_0_while = time.time()
        # Ensure parameter sizes and normalization are correct
        self.settings.scp.__post_init__()
        self.settings.sim.__post_init__()

        # Create compiled (vmapped) dynamics as new instances
        # This preserves the original un-vmapped versions in _lowered
        self._compiled_dynamics = Dynamics(
            f=jax.vmap(self._lowered.dynamics.f, in_axes=(0, 0, 0, None)),
            A=jax.vmap(self._lowered.dynamics.A, in_axes=(0, 0, 0, None)),
            B=jax.vmap(self._lowered.dynamics.B, in_axes=(0, 0, 0, None)),
        )

        self._compiled_dynamics_prop = Dynamics(
            f=jax.vmap(self._lowered.dynamics_prop.f, in_axes=(0, 0, 0, None)),
        )

        # Create compiled (JIT-compiled) constraints as new instances
        # This preserves the original un-JIT'd versions in _lowered
        # TODO: (haynec) switch to AOT instead of JIT
        compiled_nodal = [
            LoweredNodalConstraint(
                func=jax.jit(c.func),
                grad_g_x=jax.jit(c.grad_g_x),
                grad_g_u=jax.jit(c.grad_g_u),
                nodes=c.nodes,
            )
            for c in self._lowered.jax_constraints.nodal
        ]

        compiled_cross_node = [
            LoweredCrossNodeConstraint(
                func=jax.jit(c.func),
                grad_g_X=jax.jit(c.grad_g_X),
                grad_g_U=jax.jit(c.grad_g_U),
            )
            for c in self._lowered.jax_constraints.cross_node
        ]

        self._compiled_constraints = LoweredJaxConstraints(
            nodal=compiled_nodal,
            cross_node=compiled_cross_node,
            ctcs=self._lowered.jax_constraints.ctcs,  # CTCS aren't JIT-compiled here
        )

        # Generate solvers using compiled (vmapped) dynamics
        self._discretization_solver = get_discretization_solver(
            self._compiled_dynamics, self.settings
        )
        self._propagation_solver = get_propagation_solver(
            self._compiled_dynamics_prop.f, self.settings
        )

        # Build convex subproblem (solver was created in __init__, variables in lower)
        self._solver.initialize(self._lowered, self.settings)

        # Print problem summary (after solver is initialized so we can access problem stats)
        printing.print_problem_summary(self.settings, self._lowered, self._solver)

        # Get cache file paths using symbolic AST hashing
        # This is more stable than hashing lowered JAX code
        dis_solver_file, prop_solver_file = get_solver_cache_paths(
            self.symbolic,
            dt=self.settings.prp.dt,
            total_time=self.settings.sim.total_time,
            byof=self._byof,
        )

        # Compile the discretization solver
        self._discretization_solver = load_or_compile_discretization_solver(
            self._discretization_solver,
            dis_solver_file,
            self._parameters,  # Plain dict for JAX
            self.settings.scp.n,
            self.settings.sim.n_states,
            self.settings.sim.n_controls,
            save_compiled=self.settings.sim.save_compiled,
            debug=self.settings.dev.debug,
        )

        # Setup propagation solver parameters
        dtau = 1.0 / (self.settings.scp.n - 1)
        dt_max = self.settings.sim.u.max[self.settings.sim.time_dilation_slice][0] * dtau
        self.settings.prp.max_tau_len = int(dt_max / self.settings.prp.dt) + 2

        # Compile the propagation solver
        self._propagation_solver = load_or_compile_propagation_solver(
            self._propagation_solver,
            prop_solver_file,
            self._parameters,  # Plain dict for JAX
            self.settings.sim.n_states_prop,
            self.settings.sim.n_controls,
            self.settings.prp.max_tau_len,
            save_compiled=self.settings.sim.save_compiled,
        )

        # Initialize the SCP algorithm
        print("Initializing the SCvx Subproblem Solver...")
        self._algorithm.initialize(
            self._solver,
            self._discretization_solver,
            self._compiled_constraints,
            self.emitter_function,
            self._parameters,  # For warm-start only
            self.settings,  # For warm-start only
        )
        print("✓ SCvx Subproblem Solver initialized")

        # Get columns from algorithm (now that autotuner is set) and start print thread
        if self.settings.dev.printing:
            self._columns = self._algorithm.get_columns(self.settings.dev.verbosity)
            self.print_thread = threading.Thread(
                target=printing.intermediate,
                args=(self.print_queue, self.settings, self._columns),
                daemon=True,
            )
            self.print_thread.start()
        else:
            # Printing was disabled after __init__, disable emitter to avoid queue buildup
            self.emitter_function = lambda data: None

        # Create fresh solver state
        self._state = AlgorithmState.from_settings(self.settings)

        t_f_while = time.time()
        self.timing_init = t_f_while - t_0_while
        print("Total Initialization Time: ", self.timing_init)

        # Prime the propagation solver
        prime_propagation_solver(self._propagation_solver, self._parameters, self.settings)

        profiling.profiling_end(pr, "initialize")

    def reset(self):
        """Reset solver state to re-run optimization from initial conditions.

        Creates fresh AlgorithmState while preserving compiled dynamics and solvers.
        Use this to run multiple optimizations without re-initializing.

        Raises:
            ValueError: If initialize() has not been called yet.

        Example:
            After calling `.step()` it may be necessary to reset the problem back to the initial
            conditions

                problem.initialize()
                result1 = problem.step()
                problem.reset()
                result2 = problem.solve()  # Fresh run with same setup
        """
        if self._compiled_dynamics is None:
            raise ValueError("Problem has not been initialized. Call initialize() first")

        # Create fresh solver state from settings
        self._state = AlgorithmState.from_settings(self.settings)

        # Reset solution
        self._solution = None

        # Reset timing
        self.timing_solve = None
        self.timing_post = None

    def step(self) -> dict:
        """Perform a single SCP iteration.

        Designed for real-time plotting and interactive optimization. Performs one
        iteration including subproblem solve, state update, and progress emission.

        Note:
            This method is NOT idempotent - it mutates internal state and advances
            the iteration counter. Use reset() to return to initial conditions.

        Returns:
            dict: Contains "converged" (bool) and current iteration state

        Example:
            Call `.step()` manually in a loop to control the algorithm directly

                problem.initialize()
                while not problem.step()["converged"]:
                    plot_trajectory(problem.state.trajs[-1])
        """
        if self._state is None:
            raise ValueError("Problem has not been initialized. Call initialize() first")

        converged = self._algorithm.step(
            self._state,
            self._parameters,  # May change between steps
            self.settings,  # May change between steps
        )

        # Return dict matching original API
        return {
            "converged": converged,
            "scp_k": self._state.k,
            "scp_J_tr": self._state.J_tr,
            "scp_J_vb": self._state.J_vb,
            "scp_J_vc": self._state.J_vc,
        }

    def solve(
        self, max_iters: Optional[int] = None, continuous: bool = False
    ) -> OptimizationResults:
        """Run the SCP algorithm until convergence or iteration limit.

        Args:
            max_iters: Maximum iterations (default: settings.scp.k_max)
            continuous: If True, run all iterations regardless of convergence

        Returns:
            OptimizationResults with trajectory and convergence info
                (call post_process() for full propagation)
        """
        # Sync parameters before solving
        self._sync_parameters()

        required = [
            self._compiled_dynamics,
            self._compiled_constraints,
            self._solver,
            self._discretization_solver,
            self._state,
        ]
        if any(r is None for r in required):
            raise ValueError("Problem has not been initialized. Call initialize() before solve()")

        # Enable the profiler
        pr = profiling.profiling_start(self.settings.dev.profiling)

        t_0_while = time.time()
        # Print top header for solver results
        if self.settings.dev.printing:
            printing.header(self._columns)

        k_max = max_iters if max_iters is not None else self.settings.scp.k_max

        while self._state.k <= k_max:
            result = self.step()
            if result["converged"] and not continuous:
                break

        t_f_while = time.time()
        self.timing_solve = t_f_while - t_0_while

        # Wait for print queue to drain (only if thread is running)
        if self.print_thread is not None and self.print_thread.is_alive():
            while self.print_queue.qsize() > 0:
                time.sleep(0.1)

        # Print bottom footer for solver results
        if self.settings.dev.printing:
            printing.footer(self._columns)

        profiling.profiling_end(pr, "solve")

        # Store solution state
        self._solution = copy.deepcopy(self._state)

        return self._format_result(self._state, self._state.k <= k_max)

    def post_process(self) -> OptimizationResults:
        """Propagate solution through full nonlinear dynamics for high-fidelity trajectory.

        Integrates the converged SCP solution through the nonlinear dynamics to
        produce x_full, u_full, and t_full. Call after solve() for final results.

        Returns:
            OptimizationResults with propagated trajectory fields

        Raises:
            ValueError: If solve() has not been called yet.
        """
        if self._solution is None:
            raise ValueError("No solution available. Call solve() first.")

        # Enable the profiler
        pr = profiling.profiling_start(self.settings.dev.profiling)

        # Create result from stored solution state
        result = self._format_result(self._solution, self._solution.k <= self.settings.scp.k_max)

        t_0_post = time.time()
        result = propagate_trajectory_results(
            self._parameters,
            self.settings,
            result,
            self._propagation_solver,
            algebraic_prop=self._lowered.algebraic_prop,
        )
        t_f_post = time.time()

        self.timing_post = t_f_post - t_0_post

        # Store the propagated result back into _solution for plotting
        # Store as a cached attribute on the _solution object
        self._solution._propagated_result = result

        # Print results summary
        printing.print_results_summary(
            result, self.timing_post, self.timing_init, self.timing_solve
        )

        profiling.profiling_end(pr, "postprocess")
        return result

    def citation(self) -> str:
        """Return BibTeX citations for all components used in this problem.

        Aggregates citations from the algorithm and other components (discretization,
        convex solver, etc.) Each section is prefixed with a comment indicating which component the
        citation is for.

        Returns:
            Formatted string containing all BibTeX citations with comments.

        Example:
            Print all citations for a problem::

                problem = Problem(dynamics, constraints, states, controls, N, time)
                print(problem.citation())
        """
        sections = []

        sections.append(r"% --- AUTO-GENERATED CITATIONS FOR OPENSCVX CONFIGURATION ---")

        # Algorithm citations
        algo_citations = self._algorithm.citation()
        if algo_citations:
            algo_name = type(self._algorithm).__name__
            header = f"% Algorithm: {algo_name}"
            citations = "\n".join(algo_citations)
            sections.append(f"{header}\n\n{citations}")

        # Solver citations
        solver_citations = self._solver.citation()
        if solver_citations:
            solver_name = type(self._solver).__name__
            header = f"% Convex Solver: {solver_name}"
            citations = "\n".join(solver_citations)
            sections.append(f"{header}\n\n{citations}")

        # Future: add citations from discretization, constraint formulations, etc.

        sections.append(r"% --- END AUTO-GENERATED CITATIONS")

        return "\n\n".join(sections)
lowered: LoweredProblem property

Access the lowered problem containing JAX/CVXPy objects.

Returns:

Type Description
LoweredProblem

LoweredProblem with dynamics, constraints, unified interfaces, and CVXPy vars

parameters: ParameterDict property writable

Get the parameters dictionary.

The returned dictionary automatically syncs to CVXPy when modified

problem.parameters["obs_radius"] = 2.0 # Auto-syncs to CVXPy problem.parameters.update({"gate_0_center": center}) # Also syncs

Returns:

Name Type Description
ParameterDict ParameterDict

Special dict that syncs to CVXPy on assignment.

slices: dict[str, slice] property

Get mapping of state and control names to their slices in unified vectors.

This property returns a dictionary mapping each state and control variable name to its slice in the respective unified vector. This is particularly useful for expert users working with byof (bring-your-own functions) who need to manually index into the unified x and u vectors.

Returns:

Type Description
dict[str, slice]

Dictionary mapping variable names to slice objects. State variables map to slices in the x vector. Control variables map to slices in the u vector.

Example

Usage with byof::

problem = ox.Problem(dynamics, states, controls, ...)
print(problem.slices)
# {'position': slice(0, 3), 'velocity': slice(3, 6), 'theta': slice(0, 1)}

# Use in byof functions
byof = {
    "nodal_constraints": [
        lambda x, u, node, params: x[problem.slices["velocity"][0]] - 10.0,
        lambda x, u, node, params: u[problem.slices["theta"][0]] - 1.57,
    ]
}
state: Optional[AlgorithmState] property

Access the current solver state.

The solver state contains all mutable state from the SCP iterations, including current guesses, costs, weights, and history.

Returns:

Type Description
Optional[AlgorithmState]

AlgorithmState if initialized, None otherwise

Example

When using Problem.step() can use the state to check convergence etc.

problem.initialize()
problem.step()
print(f"Iteration {problem.state.k}, J_tr={problem.state.J_tr}")
u_unified property

Unified control interface (delegates to lowered.u_unified).

x_unified property

Unified state interface (delegates to lowered.x_unified).

__init__(dynamics: dict, constraints: List[Union[Constraint, CTCS]], states: List[State], controls: List[Control], N: int, time: Time, *, dynamics_prop: Optional[dict] = None, states_prop: Optional[List[State]] = None, algebraic_prop: Optional[dict] = None, licq_min: float = 0.0, licq_max: float = 0.0001, time_dilation_factor_min: float = 0.3, time_dilation_factor_max: float = 3.0, autotuner: Optional[AutotuningBase] = AugmentedLagrangian(), byof: Optional[ByofSpec] = None)

The primary class in charge of compiling and exporting the solvers.

Parameters:

Name Type Description Default
dynamics dict

Dictionary mapping state names to their dynamics expressions. Each key should be a state name, and each value should be an Expr representing the derivative of that state.

required
constraints List[Union[CTCSConstraint, NodalConstraint]]

List of constraints decorated with @ctcs or @nodal

required
states List[State]

List of State objects representing the state variables. May optionally include a State named "time" (see time parameter below).

required
controls List[Control]

List of Control objects representing the control variables

required
N int

Number of segments in the trajectory

required
time Time

Time configuration object with initial, final, min, max. Required. If including a "time" state in states, the Time object will be ignored and time properties should be set on the time State object instead.

required
dynamics_prop dict

Dictionary mapping EXTRA state names to their dynamics expressions for propagation. Only specify additional states beyond optimization states (e.g., {"distance": speed}). Do NOT duplicate optimization state dynamics here.

None
states_prop List[State]

List of EXTRA State objects for propagation only. Only specify additional states beyond optimization states. Used with dynamics_prop.

None
algebraic_prop dict

Dictionary mapping names to symbolic expressions for outputs evaluated (not integrated) during propagation.

None
licq_min float

Minimum LICQ constraint value. Defaults to 0.0.

0.0
licq_max float

Maximum LICQ constraint value. Defaults to 1e-4.

0.0001
time_dilation_factor_min float

Minimum time dilation factor. Defaults to 0.3.

0.3
time_dilation_factor_max float

Maximum time dilation factor. Defaults to 3.0.

3.0
byof ByofSpec

Expert mode only. Raw JAX functions to bypass symbolic layer. See :class:openscvx.expert.ByofSpec for detailed documentation.

None
Note

There are two approaches for handling time: 1. Auto-create (simple): Don't include "time" in states, provide Time object 2. User-provided (for time-dependent constraints): Include "time" State in states and in dynamics dict, don't provide Time object

Source code in openscvx/problem.py
def __init__(
    self,
    dynamics: dict,
    constraints: List[Union[Constraint, CTCS]],
    states: List[State],
    controls: List[Control],
    N: int,
    time: Time,
    *,
    dynamics_prop: Optional[dict] = None,
    states_prop: Optional[List[State]] = None,
    algebraic_prop: Optional[dict] = None,
    licq_min: float = 0.0,
    licq_max: float = 1e-4,
    time_dilation_factor_min: float = 0.3,
    time_dilation_factor_max: float = 3.0,
    autotuner: Optional[AutotuningBase] = AugmentedLagrangian(),
    byof: Optional[ByofSpec] = None,
):
    """The primary class in charge of compiling and exporting the solvers.

    Args:
        dynamics (dict): Dictionary mapping state names to their dynamics expressions.
            Each key should be a state name, and each value should be an Expr
            representing the derivative of that state.
        constraints (List[Union[CTCSConstraint, NodalConstraint]]):
            List of constraints decorated with @ctcs or @nodal
        states (List[State]): List of State objects representing the state variables.
            May optionally include a State named "time" (see time parameter below).
        controls (List[Control]): List of Control objects representing the control variables
        N (int): Number of segments in the trajectory
        time (Time): Time configuration object with initial, final, min, max.
            Required. If including a "time" state in states, the Time object will be ignored
            and time properties should be set on the time State object instead.
        dynamics_prop (dict, optional): Dictionary mapping EXTRA state names to their
            dynamics expressions for propagation. Only specify additional states beyond
            optimization states (e.g., {"distance": speed}). Do NOT duplicate optimization
            state dynamics here.
        states_prop (List[State], optional): List of EXTRA State objects for propagation only.
            Only specify additional states beyond optimization states. Used with dynamics_prop.
        algebraic_prop (dict, optional): Dictionary mapping names to symbolic expressions
            for outputs evaluated (not integrated) during propagation.
        licq_min (float): Minimum LICQ constraint value. Defaults to 0.0.
        licq_max (float): Maximum LICQ constraint value. Defaults to 1e-4.
        time_dilation_factor_min (float): Minimum time dilation factor.
            Defaults to 0.3.
        time_dilation_factor_max (float): Maximum time dilation factor.
            Defaults to 3.0.
        byof (ByofSpec, optional): Expert mode only. Raw JAX functions to
            bypass symbolic layer. See :class:`openscvx.expert.ByofSpec` for
            detailed documentation.

    Note:
        There are two approaches for handling time:
        1. Auto-create (simple): Don't include "time" in states, provide Time object
        2. User-provided (for time-dependent constraints): Include "time" State in states and
           in dynamics dict, don't provide Time object
    """

    # Symbolic Preprocessing & Augmentation
    self.symbolic: SymbolicProblem = preprocess_symbolic_problem(
        dynamics=dynamics,
        constraints=constraints,
        states=states,
        controls=controls,
        N=N,
        time=time,
        licq_min=licq_min,
        licq_max=licq_max,
        time_dilation_factor_min=time_dilation_factor_min,
        time_dilation_factor_max=time_dilation_factor_max,
        dynamics_prop_extra=dynamics_prop,
        states_prop_extra=states_prop,
        algebraic_prop=algebraic_prop,
        byof=byof,
    )

    # Validate byof early (after preprocessing, before lowering) to fail fast
    if byof is not None:
        from openscvx.expert.validation import validate_byof

        # Calculate unified state and control dimensions from preprocessed states/controls
        # These dimensions include symbolic augmentation (time, CTCS) but not byof CTCS
        # augmentation, which is exactly what user byof functions will see
        n_x = sum(
            state.shape[0] if len(state.shape) > 0 else 1 for state in self.symbolic.states
        )
        n_u = sum(
            control.shape[0] if len(control.shape) > 0 else 1
            for control in self.symbolic.controls
        )

        validate_byof(byof, self.symbolic.states, n_x, n_u, N)

    # Store byof for cache hashing
    self._byof = byof

    # Create solver before lowering (solver owns its variables)
    self._solver: PTRSolver = PTRSolver()

    # Lower to JAX and CVXPy (byof handling happens inside lower_symbolic_problem)
    self._lowered: LoweredProblem = lower_symbolic_problem(
        self.symbolic, self._solver, byof=byof
    )

    # Store parameters in two forms:
    self._parameters = self.symbolic.parameters  # Plain dict for JAX functions
    # Wrapper dict for user access that auto-syncs
    self._parameter_wrapper = ParameterDict(self, self._parameters, self.symbolic.parameters)

    # Setup SCP Configuration
    self.settings = Config(
        sim=SimConfig(
            x=self._lowered.x_unified,
            x_prop=self._lowered.x_prop_unified,
            u=self._lowered.u_unified,
            total_time=self._lowered.x_unified.initial[self._lowered.x_unified.time_slice][0],
            n_states=self._lowered.x_unified.initial.shape[0],
            n_states_prop=self._lowered.x_prop_unified.initial.shape[0],
            ctcs_node_intervals=self.symbolic.node_intervals,
        ),
        scp=ScpConfig(
            n=N,
            n_states=self._lowered.x_unified.shape[0],
            autotuner=autotuner,
        ),
        dis=DiscretizationConfig(),
        dev=DevConfig(),
        cvx=ConvexSolverConfig(),
        prp=PropagationConfig(),
    )

    # OCP construction happens in initialize() so users can modify
    # settings (like uniform_time_grid) between __init__ and initialize()
    self._discretization_solver: callable = None

    # Set up emitter & queue (thread started in initialize() after columns are known)
    if self.settings.dev.printing:
        self.print_queue = queue.Queue()
        self.emitter_function = lambda data: self.print_queue.put(data)
        self.print_thread = None  # Started in initialize()
    else:
        # no-op emitter; nothing ever gets queued or printed
        self.print_queue = None
        self.emitter_function = lambda data: None
        self.print_thread = None

    # Columns for printing (set in initialize() based on algorithm + autotuner)
    self._columns = None

    self.timing_init = None
    self.timing_solve = None
    self.timing_post = None

    # Compiled dynamics (vmapped versions, set in initialize())
    self._compiled_dynamics: Optional[Dynamics] = None
    self._compiled_dynamics_prop: Optional[Dynamics] = None

    # Compiled constraints (JIT-compiled versions, set in initialize())
    self._compiled_constraints: Optional[LoweredJaxConstraints] = None

    # Solver state (created fresh for each solve)
    self._state: Optional[AlgorithmState] = None

    # Final solution state (saved after successful solve)
    self._solution: Optional[AlgorithmState] = None

    # SCP algorithm (currently hardcoded to PTR)
    self._algorithm = PenalizedTrustRegion()
citation() -> str

Return BibTeX citations for all components used in this problem.

Aggregates citations from the algorithm and other components (discretization, convex solver, etc.) Each section is prefixed with a comment indicating which component the citation is for.

Returns:

Type Description
str

Formatted string containing all BibTeX citations with comments.

Example

Print all citations for a problem::

problem = Problem(dynamics, constraints, states, controls, N, time)
print(problem.citation())
Source code in openscvx/problem.py
def citation(self) -> str:
    """Return BibTeX citations for all components used in this problem.

    Aggregates citations from the algorithm and other components (discretization,
    convex solver, etc.) Each section is prefixed with a comment indicating which component the
    citation is for.

    Returns:
        Formatted string containing all BibTeX citations with comments.

    Example:
        Print all citations for a problem::

            problem = Problem(dynamics, constraints, states, controls, N, time)
            print(problem.citation())
    """
    sections = []

    sections.append(r"% --- AUTO-GENERATED CITATIONS FOR OPENSCVX CONFIGURATION ---")

    # Algorithm citations
    algo_citations = self._algorithm.citation()
    if algo_citations:
        algo_name = type(self._algorithm).__name__
        header = f"% Algorithm: {algo_name}"
        citations = "\n".join(algo_citations)
        sections.append(f"{header}\n\n{citations}")

    # Solver citations
    solver_citations = self._solver.citation()
    if solver_citations:
        solver_name = type(self._solver).__name__
        header = f"% Convex Solver: {solver_name}"
        citations = "\n".join(solver_citations)
        sections.append(f"{header}\n\n{citations}")

    # Future: add citations from discretization, constraint formulations, etc.

    sections.append(r"% --- END AUTO-GENERATED CITATIONS")

    return "\n\n".join(sections)
initialize()

Compile dynamics, constraints, and solvers; prepare for optimization.

This method vmaps dynamics, JIT-compiles constraints, builds the convex subproblem, and initializes the solver state. Must be called before solve().

Example

Prior to calling the .solve() method it is necessary to initialize the problem

problem = Problem(dynamics, constraints, states, controls, N, time)
problem.initialize()  # Compile and prepare
problem.solve()       # Run optimization
Source code in openscvx/problem.py
def initialize(self):
    """Compile dynamics, constraints, and solvers; prepare for optimization.

    This method vmaps dynamics, JIT-compiles constraints, builds the convex
    subproblem, and initializes the solver state. Must be called before solve().

    Example:
        Prior to calling the `.solve()` method it is necessary to initialize the problem

            problem = Problem(dynamics, constraints, states, controls, N, time)
            problem.initialize()  # Compile and prepare
            problem.solve()       # Run optimization
    """
    printing.intro()

    # Enable the profiler
    pr = profiling.profiling_start(self.settings.dev.profiling)

    t_0_while = time.time()
    # Ensure parameter sizes and normalization are correct
    self.settings.scp.__post_init__()
    self.settings.sim.__post_init__()

    # Create compiled (vmapped) dynamics as new instances
    # This preserves the original un-vmapped versions in _lowered
    self._compiled_dynamics = Dynamics(
        f=jax.vmap(self._lowered.dynamics.f, in_axes=(0, 0, 0, None)),
        A=jax.vmap(self._lowered.dynamics.A, in_axes=(0, 0, 0, None)),
        B=jax.vmap(self._lowered.dynamics.B, in_axes=(0, 0, 0, None)),
    )

    self._compiled_dynamics_prop = Dynamics(
        f=jax.vmap(self._lowered.dynamics_prop.f, in_axes=(0, 0, 0, None)),
    )

    # Create compiled (JIT-compiled) constraints as new instances
    # This preserves the original un-JIT'd versions in _lowered
    # TODO: (haynec) switch to AOT instead of JIT
    compiled_nodal = [
        LoweredNodalConstraint(
            func=jax.jit(c.func),
            grad_g_x=jax.jit(c.grad_g_x),
            grad_g_u=jax.jit(c.grad_g_u),
            nodes=c.nodes,
        )
        for c in self._lowered.jax_constraints.nodal
    ]

    compiled_cross_node = [
        LoweredCrossNodeConstraint(
            func=jax.jit(c.func),
            grad_g_X=jax.jit(c.grad_g_X),
            grad_g_U=jax.jit(c.grad_g_U),
        )
        for c in self._lowered.jax_constraints.cross_node
    ]

    self._compiled_constraints = LoweredJaxConstraints(
        nodal=compiled_nodal,
        cross_node=compiled_cross_node,
        ctcs=self._lowered.jax_constraints.ctcs,  # CTCS aren't JIT-compiled here
    )

    # Generate solvers using compiled (vmapped) dynamics
    self._discretization_solver = get_discretization_solver(
        self._compiled_dynamics, self.settings
    )
    self._propagation_solver = get_propagation_solver(
        self._compiled_dynamics_prop.f, self.settings
    )

    # Build convex subproblem (solver was created in __init__, variables in lower)
    self._solver.initialize(self._lowered, self.settings)

    # Print problem summary (after solver is initialized so we can access problem stats)
    printing.print_problem_summary(self.settings, self._lowered, self._solver)

    # Get cache file paths using symbolic AST hashing
    # This is more stable than hashing lowered JAX code
    dis_solver_file, prop_solver_file = get_solver_cache_paths(
        self.symbolic,
        dt=self.settings.prp.dt,
        total_time=self.settings.sim.total_time,
        byof=self._byof,
    )

    # Compile the discretization solver
    self._discretization_solver = load_or_compile_discretization_solver(
        self._discretization_solver,
        dis_solver_file,
        self._parameters,  # Plain dict for JAX
        self.settings.scp.n,
        self.settings.sim.n_states,
        self.settings.sim.n_controls,
        save_compiled=self.settings.sim.save_compiled,
        debug=self.settings.dev.debug,
    )

    # Setup propagation solver parameters
    dtau = 1.0 / (self.settings.scp.n - 1)
    dt_max = self.settings.sim.u.max[self.settings.sim.time_dilation_slice][0] * dtau
    self.settings.prp.max_tau_len = int(dt_max / self.settings.prp.dt) + 2

    # Compile the propagation solver
    self._propagation_solver = load_or_compile_propagation_solver(
        self._propagation_solver,
        prop_solver_file,
        self._parameters,  # Plain dict for JAX
        self.settings.sim.n_states_prop,
        self.settings.sim.n_controls,
        self.settings.prp.max_tau_len,
        save_compiled=self.settings.sim.save_compiled,
    )

    # Initialize the SCP algorithm
    print("Initializing the SCvx Subproblem Solver...")
    self._algorithm.initialize(
        self._solver,
        self._discretization_solver,
        self._compiled_constraints,
        self.emitter_function,
        self._parameters,  # For warm-start only
        self.settings,  # For warm-start only
    )
    print("✓ SCvx Subproblem Solver initialized")

    # Get columns from algorithm (now that autotuner is set) and start print thread
    if self.settings.dev.printing:
        self._columns = self._algorithm.get_columns(self.settings.dev.verbosity)
        self.print_thread = threading.Thread(
            target=printing.intermediate,
            args=(self.print_queue, self.settings, self._columns),
            daemon=True,
        )
        self.print_thread.start()
    else:
        # Printing was disabled after __init__, disable emitter to avoid queue buildup
        self.emitter_function = lambda data: None

    # Create fresh solver state
    self._state = AlgorithmState.from_settings(self.settings)

    t_f_while = time.time()
    self.timing_init = t_f_while - t_0_while
    print("Total Initialization Time: ", self.timing_init)

    # Prime the propagation solver
    prime_propagation_solver(self._propagation_solver, self._parameters, self.settings)

    profiling.profiling_end(pr, "initialize")
post_process() -> OptimizationResults

Propagate solution through full nonlinear dynamics for high-fidelity trajectory.

Integrates the converged SCP solution through the nonlinear dynamics to produce x_full, u_full, and t_full. Call after solve() for final results.

Returns:

Type Description
OptimizationResults

OptimizationResults with propagated trajectory fields

Raises:

Type Description
ValueError

If solve() has not been called yet.

Source code in openscvx/problem.py
def post_process(self) -> OptimizationResults:
    """Propagate solution through full nonlinear dynamics for high-fidelity trajectory.

    Integrates the converged SCP solution through the nonlinear dynamics to
    produce x_full, u_full, and t_full. Call after solve() for final results.

    Returns:
        OptimizationResults with propagated trajectory fields

    Raises:
        ValueError: If solve() has not been called yet.
    """
    if self._solution is None:
        raise ValueError("No solution available. Call solve() first.")

    # Enable the profiler
    pr = profiling.profiling_start(self.settings.dev.profiling)

    # Create result from stored solution state
    result = self._format_result(self._solution, self._solution.k <= self.settings.scp.k_max)

    t_0_post = time.time()
    result = propagate_trajectory_results(
        self._parameters,
        self.settings,
        result,
        self._propagation_solver,
        algebraic_prop=self._lowered.algebraic_prop,
    )
    t_f_post = time.time()

    self.timing_post = t_f_post - t_0_post

    # Store the propagated result back into _solution for plotting
    # Store as a cached attribute on the _solution object
    self._solution._propagated_result = result

    # Print results summary
    printing.print_results_summary(
        result, self.timing_post, self.timing_init, self.timing_solve
    )

    profiling.profiling_end(pr, "postprocess")
    return result
reset()

Reset solver state to re-run optimization from initial conditions.

Creates fresh AlgorithmState while preserving compiled dynamics and solvers. Use this to run multiple optimizations without re-initializing.

Raises:

Type Description
ValueError

If initialize() has not been called yet.

Example

After calling .step() it may be necessary to reset the problem back to the initial conditions

problem.initialize()
result1 = problem.step()
problem.reset()
result2 = problem.solve()  # Fresh run with same setup
Source code in openscvx/problem.py
def reset(self):
    """Reset solver state to re-run optimization from initial conditions.

    Creates fresh AlgorithmState while preserving compiled dynamics and solvers.
    Use this to run multiple optimizations without re-initializing.

    Raises:
        ValueError: If initialize() has not been called yet.

    Example:
        After calling `.step()` it may be necessary to reset the problem back to the initial
        conditions

            problem.initialize()
            result1 = problem.step()
            problem.reset()
            result2 = problem.solve()  # Fresh run with same setup
    """
    if self._compiled_dynamics is None:
        raise ValueError("Problem has not been initialized. Call initialize() first")

    # Create fresh solver state from settings
    self._state = AlgorithmState.from_settings(self.settings)

    # Reset solution
    self._solution = None

    # Reset timing
    self.timing_solve = None
    self.timing_post = None
solve(max_iters: Optional[int] = None, continuous: bool = False) -> OptimizationResults

Run the SCP algorithm until convergence or iteration limit.

Parameters:

Name Type Description Default
max_iters Optional[int]

Maximum iterations (default: settings.scp.k_max)

None
continuous bool

If True, run all iterations regardless of convergence

False

Returns:

Type Description
OptimizationResults

OptimizationResults with trajectory and convergence info (call post_process() for full propagation)

Source code in openscvx/problem.py
def solve(
    self, max_iters: Optional[int] = None, continuous: bool = False
) -> OptimizationResults:
    """Run the SCP algorithm until convergence or iteration limit.

    Args:
        max_iters: Maximum iterations (default: settings.scp.k_max)
        continuous: If True, run all iterations regardless of convergence

    Returns:
        OptimizationResults with trajectory and convergence info
            (call post_process() for full propagation)
    """
    # Sync parameters before solving
    self._sync_parameters()

    required = [
        self._compiled_dynamics,
        self._compiled_constraints,
        self._solver,
        self._discretization_solver,
        self._state,
    ]
    if any(r is None for r in required):
        raise ValueError("Problem has not been initialized. Call initialize() before solve()")

    # Enable the profiler
    pr = profiling.profiling_start(self.settings.dev.profiling)

    t_0_while = time.time()
    # Print top header for solver results
    if self.settings.dev.printing:
        printing.header(self._columns)

    k_max = max_iters if max_iters is not None else self.settings.scp.k_max

    while self._state.k <= k_max:
        result = self.step()
        if result["converged"] and not continuous:
            break

    t_f_while = time.time()
    self.timing_solve = t_f_while - t_0_while

    # Wait for print queue to drain (only if thread is running)
    if self.print_thread is not None and self.print_thread.is_alive():
        while self.print_queue.qsize() > 0:
            time.sleep(0.1)

    # Print bottom footer for solver results
    if self.settings.dev.printing:
        printing.footer(self._columns)

    profiling.profiling_end(pr, "solve")

    # Store solution state
    self._solution = copy.deepcopy(self._state)

    return self._format_result(self._state, self._state.k <= k_max)
step() -> dict

Perform a single SCP iteration.

Designed for real-time plotting and interactive optimization. Performs one iteration including subproblem solve, state update, and progress emission.

Note

This method is NOT idempotent - it mutates internal state and advances the iteration counter. Use reset() to return to initial conditions.

Returns:

Name Type Description
dict dict

Contains "converged" (bool) and current iteration state

Example

Call .step() manually in a loop to control the algorithm directly

problem.initialize()
while not problem.step()["converged"]:
    plot_trajectory(problem.state.trajs[-1])
Source code in openscvx/problem.py
def step(self) -> dict:
    """Perform a single SCP iteration.

    Designed for real-time plotting and interactive optimization. Performs one
    iteration including subproblem solve, state update, and progress emission.

    Note:
        This method is NOT idempotent - it mutates internal state and advances
        the iteration counter. Use reset() to return to initial conditions.

    Returns:
        dict: Contains "converged" (bool) and current iteration state

    Example:
        Call `.step()` manually in a loop to control the algorithm directly

            problem.initialize()
            while not problem.step()["converged"]:
                plot_trajectory(problem.state.trajs[-1])
    """
    if self._state is None:
        raise ValueError("Problem has not been initialized. Call initialize() first")

    converged = self._algorithm.step(
        self._state,
        self._parameters,  # May change between steps
        self.settings,  # May change between steps
    )

    # Return dict matching original API
    return {
        "converged": converged,
        "scp_k": self._state.k,
        "scp_J_tr": self._state.J_tr,
        "scp_J_vb": self._state.J_vb,
        "scp_J_vc": self._state.J_vc,
    }